SOLVENT EXTRACTION

d
 PERTITION COEFFICIENT

Assistant Leoturer
Sahar Mohammed
Assistant Leoturer
Wid Kadhim

Name of Experiment: PARTITION COEFFICIENT.
Aim of Experiment: Calculation of the partition coefficient of SALICYLIC ACID .

Salicylic acid,

S.A., it is colorless to white odorless crystals, molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$

Salicylic acid molar mass $138.12{\mathrm{~g} . \mathrm{mol}^{1}}^{1}$, it has a water solubility of $2.48 \mathrm{~g} \cdot \mathrm{~L}^{1}$ at $25^{\circ} \mathrm{C} \cdot$ 8_{6} it's Chloroform solubility of 22.2 g. L^{-1} at $25{ }^{\circ} \mathrm{C}$ -

Procedure:

1- Put an unknown weight of S.A. in a separatory funnel; \& then add 25 ml of chloroform $\& 25 \mathrm{ml}$ of D.W.

2- Shake gently for 15-20 minutes until no further pressure is released from the funnel stem.

3- Leave the funnel on an iron ring for about 5-10 min.s for complete separation of the 2 layers. The stopper must be removed.

4- Separate the lower chloroform layer slowly through the Funnel stem until the aqueous layer is about to enter the hole of the stopcock.

5- Pour the upper aqueous layer through the neck of the separatory funnel.

6- Take 10 ml from the organic layer by a bulb pipette, pour into a conical flask, and add two drops of ph.ph. indicator.

7- Titrate against 0.1 N NaOH solution until the end point, which is the appearance of pink colour.

8- Repeat step 6 and 7 for the aqueous layer.
calculations:

$$
\begin{gathered}
\mathrm{NaOH} \\
\mathrm{~N} * \mathrm{~V}=\frac{\text { Mascicylic acid }}{\text { Eq. mass }} * 1000
\end{gathered}
$$

The aqueous layer:

$$
0.1 \times \mathrm{V}=\frac{\mathrm{wt} .}{138} \times 1000
$$

wt. in $10 \mathrm{ml} \times 2.5($ enlarging factor $)=\boldsymbol{x}$ gram wt. of S.A. in 25 ml .

The organic layer:

$$
0.1 \times \mathrm{V}^{-}=\frac{\mathrm{wt} .}{138} \times 1000
$$

wt. in $10 \mathrm{ml} \times 2.5$ (enlarging factor $)=\boldsymbol{y}$ gram wt. of S.A. in 25 ml .
$\boldsymbol{x}+\boldsymbol{y}=---$ weight of S.A. in the sample (unknown)

$$
\boldsymbol{K}=\frac{\mathrm{wt.} \text { org. } / \mathrm{v} \text { org. } 25 \mathrm{ml}}{\mathrm{wt.} \mathrm{w} / \mathrm{v} w 25 \mathrm{ml}}
$$

QUESTIONS \& EXAMPLES :

Q1- If 100 ml of benzene dissolve 5.5 g of caffeine \& 100 ml of water dissolve 2.2 g of caffeine. Calculate the amount of caffeine that can be extracted from 500 ml of water in which 5 g of caffeine are dissolved, show calculations \& give the $\%$ of caffeine extracted a) By a single extraction with 200 ml of benzene. b) By 2 successive extractions with 100 ml of benzene in each.
c) By 3 successive extractions with 66.6 ml of benzene in each.

Q2- Calculate the partition coefficient, K, of cpd. A, when 0.24 g of the compound dissolve in 100 ml of water \& 2.7 g of it dissolve in 100 ml of ether.

Q3- An unknown sample contains 20 g of certain compound, when extracted with 100 ml water \& 35 ml ether, it was found that the partition coefficient of the compound was 4 ;
Calculate the weight of the compound extracted by the aqueous layer and by the organic layer?

Q4- Explain extraction by PH adjustment method \& illustrate in which situation we use it?

Notes:

* To recognize which layer is the aqueous layer and which is the is the organic layer, mix about 3 ml of any layer with an equal volume of water in a test tube and observe the result. If there are two layers, then that layer is the organic layer; $\&$ if there is one layer, then that layer is the aqueous layer.

